Search results for "In-process inspection"

showing 3 items of 3 documents

Continuous monitoring of an intentionally-manufactured crack using an automated welding and in-process inspection system

2020

Abstract Automated weld deposition coupled with the real-time robotic Non-Destructive Evaluation (NDE) is used in this paper. For performance verification of the in-process inspection system, an intentionally embedded defect, a tungsten rod, is introduced into the multi-pass weld. A partially-filled groove (staircase) sample is also manufactured and ultrasonically tested to calibrate the real-time inspection implemented on all seven layers of the weld which are deposited progressively. The tungsten rod is successfully detected in the real-time NDE of the deposited position. The same robotic inspection system was then used to continuously monitor an intentionally-manufactured crack for 20 h.…

Ultrasonic phased arrayMaterials scienceTKMechanical engineeringchemistry.chemical_element02 engineering and technologyWeldingTungsten010402 general chemistryRobotic NDE01 natural sciencesSignallaw.inventionRobot weldingSettore ING-IND/14 - Progettazione Meccanica E Costruzione Di Macchinelawlcsh:TA401-492Deposition (phase transition)In-process inspectionRobotic weldingGeneral Materials ScienceIntentionally manufactured weld defectsGroove (music)Mechanical EngineeringContinuous monitoringCrack growth monitoringWork in process021001 nanoscience & nanotechnology0104 chemical scienceschemistryMechanics of Materialslcsh:Materials of engineering and construction. Mechanics of materials0210 nano-technology
researchProduct

A flexible robotic cell for in-process inspection of multi-pass welds

2020

Welds are currently only inspected after all the passes are complete and after allowing sufficient time for any hydrogen cracking to develop, typically over several days. Any defects introduced between passes are therefore unreported until fully buried, greatly complicating rework and also delaying early corrections to the weld process parameters. In-process inspection can provide early intervention but involves many challenges, including operation at high temperatures with significant gradients affecting acoustic velocities and, hence, beam directions. Reflections from the incomplete parts of the weld would also be flagged as lack-of-fusion defects, requiring the region of interest (ROI) t…

021103 operations researchComputer scienceTKMechanical EngineeringGas tungsten arc welding0211 other engineering and technologiesMetals and AlloysReworkProcess (computing)Mechanical engineering02 engineering and technologyWeldingWork in process01 natural scienceslaw.inventionSettore ING-IND/14 - Progettazione Meccanica E Costruzione Di MacchineMechanics of MaterialslawRegion of interest0103 physical sciencesMaterials ChemistryRobotUltrasonic sensorRobotics In-process inspection Multi-pass welds010301 acoustics
researchProduct

Intentional weld defect process: From manufacturing by robotic welding machine to inspection using TFM phased array

2019

Specimens with intentionally embedded weld defects or flaws can be employed for training, ‎development and research into ‎procedures for mechanical property evaluation and ‎structural integrity assessment. It is critical that the artificial defects are ‎a realistic ‎representation of the flaws produced by welding. Cylindrical holes, which are usually ‎machined after welding, ‎are not realistic enough for our purposes as it is known that they ‎are easier to detect than the naturally occurring ‎imperfections and cracks. Furthermore, it is ‎usually impractical to machine a defect in a location similar to where the real ‎weld defects ‎are found. For example, electro-discharge machining can prod…

Materials scienceAperturePhased arrayTKAcousticschemistry.chemical_elementWeldingRoboticsTungstenlaw.inventionRobot weldingchemistry.chemical_compoundManufacturingMachiningchemistryTungsten carbidelawTFM phased arrayUltrasonic sensorIn-process inspectionWelding
researchProduct